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Abstract 
The integration of correlation-based artificial intelligence (AI)... has created significant systemic 
risk challenges, exposed model brittleness, and highlighted a lack of causal understanding. This 
has been linked to significant model failures (e.g., TerraUSD collapse) and has contributed to an 
increasing regulatory focus on "meaningful explainability"... which may render opaque "Black 
Box" models sub-optimal for critical regulatory functions. This report advocates for Structural 
Causal AI as a robust, auditable framework to meet these challenges, moving financial 
modeling from Level 1 (Association) to Level 3 (Counterfactuals) of Pearl's Causal Hierarchy. 
This architecture is built on three pillars: 

1.​ Structural Causal Models (SCMs): Utilizing frameworks like FinCARE, which fuses 
LLM-extracted causal knowledge with statistical algorithms to create transparent, 
auditable causal graphs that provide verifiable logic for regulatory compliance. 

2.​ Physics-Informed Neural Networks (PINNs): Embedding financial laws (e.g., 
no-arbitrage) directly into the model's loss function. Advanced variants, RRaPINNs, 
minimize the Conditional Value-at-Risk (CVaR) of model residuals to ensure structural 
integrity and robust performance in high-volatility "tail risk" scenarios. PINNs also solve 
the "Startup Dilemma" by enabling competitive modeling with minimal data. 

3.​ Temporal Conformal Prediction (TCP): A distribution-free framework that provides 
guaranteed uncertainty and prediction intervals that dynamically adapt to 
non-stationary market regimes, proving superior to traditional risk metrics like VaR during 
the COVID-19 stress test. 

Structural Causal AI synthesizes these elements to create "Glass Box" systems, shifting the 
industry from modeling the shadows of the market (correlation) to modeling its core machinery 
(causation). 
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1. The Epistemic Crisis in Modern Financial Intelligence 
The integration of artificial intelligence into the global financial architecture has 
precipitated a profound epistemic crisis, characterized by a dangerous divergence 
between the perceived competence of algorithmic systems and their actual structural 
reliability. While the proliferation of deep learning agents and Large Language Models 
(LLMs) has delivered superficial efficiencies in information synthesis and automated 
decision-making, it has simultaneously introduced a class of systemic risks that are 
poorly understood and difficult to quantify using traditional metrics. This report argues 
that the era of unconstrained data mining is ending, driven by a convergence of 
catastrophic model failures during recent market crises and a stringent new global 
regulatory regime demanding "meaningful explainability." 
 
The central thesis of this analysis is that the current generation of AI models—built 
primarily on the statistical correlation of historical data—suffers from a fundamental 
"epistemic gap." These models function as what recent scholarship describes as 
"stochastic parrots" or engines of "Potemkin interpretation"1. They generate outputs that 
possess the façade of expert reasoning but lack any grounding in the causal mechanisms 
that govern financial markets. In high-stakes environments, such as capital determination, 
credit underwriting, and systemic risk monitoring, this lack of understanding is not merely 
a technical limitation; it is a source of endogenous risk that threatens the stability of the 
financial system itself. 

1.1 The Illusion of Competence: "Potemkin Interpretation" and 
Brittleness 
Current AI models, particularly Generative AI and deep neural networks, exhibit a 
phenomenon best described as "superficial fluency." These systems produce 
outputs—whether code, market analysis, or risk assessments—that appear correct and 
authoritative but are often "brittle and frequently arbitrary"1. This brittleness is empirically 
demonstrated by the phenomenon of "prompting instability," where minor, semantically 
irrelevant perturbations to an input prompt can lead to diametrically opposed outputs. For 
instance, research indicates that changing a prompt from asking a model to "explore" a 
company's financial distress to asking it to "delve" into the same data can cause 
significantly different risk classifications1. 
 
This introduces a level of stochastic noise that is fundamentally incompatible with 
fiduciary responsibility. If a model’s output is contingent on the arbitrary phrasing of a 
query rather than the fundamental economic reality of the asset, it cannot serve as a 
basis for robust risk management. This "reliability gap" is exacerbated by the "epistemic 
gap": the uncertainty regarding what these models are actually measuring3. Proponents of 
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generative interpretation in law and finance argue that LLMs can replace human judgment 
in interpretive tasks. However, empirical studies show that these models do not "reason" 
in any legal or economic sense; they traverse a probabilistic map of language patterns. 
This distinction is critical because, unlike a human analyst whose errors can be audited 
against a logic framework, an LLM's error is often a hallucination—a plausible-sounding 
falsehood derived from statistical noise. 

1.2 Systemic Feedback Loops and Endogenous Risk 
The danger of correlation-based AI extends beyond individual model failure to the 
creation of endogenous feedback loops. When multiple algorithmic agents operate on 
similar flawed correlations, they can amplify market signals, detaching prices from 
fundamentals and precipitating liquidity crises. The collapse of the TerraUSD (UST) 
stablecoin serves as a potent case study of this "model risk"1. 
 
Unlike traditional market crashes driven by exogenous shocks (e.g., a pandemic or 
geopolitical event), the Terra collapse was a mechanism design failure exacerbated by 
algorithmic feedback. The system relied on an arbitrage mechanism between the 
stablecoin (UST) and its collateral token (LUNA) to maintain a peg. However, this 
mechanism presupposed a level of market liquidity and uncorrelated behavior that 
evaporated under stress. As the peg broke, algorithmic trading bots and smart contracts, 
acting on pre-programmed correlation assumptions, executed a cascade of sell orders 
that hyper-inflated the LUNA supply, driving its value to zero4. 
 
This event highlights the critical distinction between exogenous risk (risk from the world) 
and endogenous risk (risk generated by the system itself). "Black Box" models are 
inherently blind to endogenous risk because they are trained on historical data where 
these feedback loops may not have been active or visible. They assume the market is a 
static environment to be predicted, rather than a dynamic system that reacts to their own 
predictions. This report posits that Structural Causal AI is the necessary evolution to 
address this blindness. By explicitly modeling the causal mechanisms—the "physics" of 
the market—risk managers can simulate counterfactual scenarios where liquidity dries up 
or feedback loops activate, moving beyond the limitations of historical correlation. 

1.3 The Economic Barrier: The "Startup Dilemma" 
Beyond the systemic and epistemic risks, the reliance on deep learning creates a 
debilitating economic barrier for new market entrants, referred to here as the **"Startup 
Dilemma"**1. Deep learning models are notoriously data-hungry, often requiring millions 
of labeled examples to converge to a useful solution. The cost of acquiring, cleaning, and 
annotating financial data is prohibitive. Expert annotation for financial datasets—such as 
labeling distressed assets in balance sheets or classifying complex derivatives—requires 
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domain expertise that commands high hourly rates, often ranging from $6 to $12 per hour 
or significantly higher for specialized tasks2. 
 
This economic structure entrenches incumbents—large banks and major technology 
firms—who possess proprietary data moats. Startups attempting to compete using 
standard deep learning architectures face a "Cold Start" problem: they cannot afford the 
data required to train a competitive model, and without a competitive model, they cannot 
acquire the customers necessary to generate data. This stifles innovation and 
homogenizes the modeling approaches used in the market, further increasing systemic 
correlation. As we will detail in Section 6, Physics-Informed Neural Networks (PINNs) 
offer a solution to this dilemma by substituting data with structure. By embedding financial 
laws directly into the learning process, PINNs can solve complex pricing and risk 
problems with sparse or even zero labeled data, dramatically lowering the barrier to entry 
and enabling a more diverse ecosystem of models2. 

2. The Regulatory Pivot: From Passive Guidance to Active 
Enforcement 
The regulatory landscape for Artificial Intelligence in finance has undergone a phase 
transition. We have moved from an era of high-level principles and passive guidance to 
one of active enforcement and specific, stringent requirements. Regulatory bodies 
globally are converging on a single mandate: opacity is a liability. 

2.1 The SEC and the Crackdown on "AI Washing" 
In the United States, the Securities and Exchange Commission (SEC) has aggressively 
targeted "AI washing"—the practice of making unsubstantiated claims about an 
algorithm's capabilities. In March 2024, the SEC settled charges against two investment 
advisers, Delphia (USA) Inc. and Global Predictions Inc., for making false and misleading 
statements about their use of AI5. 
 

●​ Delphia claimed to use "predictive algorithmic models" and "machine learning" to 
analyze client data for investment decisions. Specifically, they marketed that they 
used client data from social media, banking, and credit cards to "make intelligent 
investment decisions." The SEC found these claims to be false; the firm was not 
using the touted AI capabilities in its investment process in the manner described. 

●​ Global Predictions marketed itself as the "first regulated AI financial advisor" and 
claimed to use "Expert AI-driven forecasts." The SEC found these representations 
to be unsubstantiated and penalized the firm for failing to produce documentation 
supporting these claims. 
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These enforcement actions, resulting in substantial civil penalties ($225,000 for Delphia 
and $175,000 for Global Predictions), signal a new reality: Model failure is a legal event. 
Financial institutions must be able to substantiate their claims about AI performance. If a 
model is a "Black Box" whose operations cannot be verified or explained, any marketing 
claim regarding its "expert" nature or "predictive power" carries significant regulatory 
risk. The SEC has made it clear that "claims about prospects should have a reasonable 
basis and investors should be told that basis"6. This effectively mandates a level of 
transparency that pure "Black Box" models cannot provide. 

2.2 Global Mandates for "Meaningful Explainability" 
International standard-setting bodies are reinforcing this stance by tightening the 
definition of "explainability." It is no longer sufficient to provide a "feature importance" 
chart (like SHAP values) that merely indicates correlations. Regulators are demanding 
explanations that reveal the causal logic of the decision. 
 

●​ Bank for International Settlements (BIS): The BIS has identified opaque models as 
a direct prudential concern. In its reports on AI in the financial sector, The BIS 
emphasizes that a model whose results lack auditable transparency or 
reproducibility presents a high prudential concern for critical business areas... The 
BIS has indicated that "supervisory authorities may have reduced confidence in 
the results of an AI model that lacks sufficient explainability." 

●​ International Association of Insurance Supervisors (IAIS): The IAIS has defined 
"meaningful explanations" as providing "understandable, transparent, and 
relevant insights" into the decision-making process1. This definition pushes 
beyond technical transparency to "mental model alignment"—the explanation must 
make sense to a human domain expert. An explanation that relies on 
high-dimensional vector math is not "meaningful" to a loan officer or a regulator. 

●​ U.S. Regulatory Agencies: The definition of explainability is coalescing around 
"how an AI approach uses inputs to produce outputs"1. This implies a mechanistic 
understanding, not just a statistical one. 

 
This regulatory environment creates a binary outcome for financial firms: build "Glass 
Box" models that are inherently explainable and structurally sound, or risk being locked 
out of high-value enterprise markets and facing enforcement actions. The "move fast and 
break things" era for financial AI is effectively over; the new era demands "move 
deliberately and prove it." 

3. Theoretical Framework: Ascending the Causal Hierarchy 
To meet these regulatory and epistemic challenges, financial modeling must transcend 
"objective metrics" of accuracy (like Mean Squared Error or AUC) and adopt Structural 
Fidelity as the primary standard. This requires a theoretical framework that distinguishes 
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between different types of information. We utilize the Causal Hierarchy Theorem (CHT), 
formalized by Judea Pearl and recently adapted for financial contexts1. 

3.1 The Causal Hierarchy (Pearl's Ladder) 
The CHT posits that causal information is structured in three distinct levels. Information at 
a lower level cannot answer questions at a higher level without additional structural 
assumptions. This theorem proves that no amount of Level 1 data (correlation) can 
produce Level 2 or Level 3 knowledge without a model of the underlying mechanism. 
 
Level 1: Association (Seeing) 
 

●​ Question: "What if I see X?" (e.g., "How does the stock price correlate with 
interest rates?") 

●​ Current State: This is the domain of standard Machine Learning and Large 
Language Models. These systems are excellent at pattern recognition and curve 
fitting. 

●​ Limitation: They are prone to the "Correlation-Causality Fallacy." For example, 
standard linear metrics often miss significant nonlinear causality between markets, 
leading risk managers to underestimate true asset connectivity during a crisis1. A 
model might learn that "umbrella sales" correlate with "traffic accidents" (both 
caused by rain) and erroneously predict that banning umbrellas will reduce 
accidents. In finance, this manifests as models learning spurious correlations that 
vanish during regime shifts. 

 
Level 2: Intervention (Doing) 
 

●​ Question: "What if I do X?" (e.g., "What will happen to liquidity if the central bank 
raises rates?" or "What happens if we liquidate this position?") 

●​ Requirement: Answering this requires a model of the mechanism, not just a 
historical pattern. It requires understanding the direction of causality. 

●​ Financial Relevance: This is critical for policy making and active portfolio 
management. It distinguishes between a passive observation and an active change 
in the system1. 

 
Level 3: Counterfactuals (Imagining) 
 

●​ Question: "What if X had been different?" (e.g., "What would our portfolio value be 
today if we had hedged yesterday?" or "Would this borrower have defaulted if they 
had been given a lower interest rate?") 

●​ Requirement: This requires a fully specified Structural Causal Model (SCM) that 
can simulate worlds that never occurred. 
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●​ Financial Relevance: This is the core of rigorous risk management, stress testing, 
and liability management. It allows firms to test their resilience against "Black 
Swan" events that have not yet happened but are structurally possible1. 

 
The proposed Structural Causal AI standard explicitly targets Level 2 and Level 3. By 
modeling the underlying mechanisms (the "structure"), these systems can answer 
interventional and counterfactual questions, providing the "meaningful explainability" 
regulators demand. 

4. Pillar 1: Structural Causal Models (SCMs) for Verifiable 
Logic 
The first pillar of the proposed architecture addresses the flaw of logic. Structural Causal 
Models (SCMs) provide a framework where the relationships between variables are 
defined by directed edges in a graph, representing causal influence rather than mere 
statistical association. 

4.1 The FinCARE Framework: A Hybrid Discovery Pipeline 
Constructing SCMs for finance is challenging due to the complexity and dimensionality of 
the system. We propose a hybrid pipeline, validated by the FinCARE (Financial Causal 
Analysis with Reasoning and Evidence) framework, which integrates Large Language 
Models (LLMs) with statistical causal discovery algorithms to overcome the limitations of 
each11. 
 
The Methodology: 
 
The FinCARE framework operates on the premise that while statistical algorithms (like PC 
or GES) are rigorous, they struggle with "weak signals" and often produce Markov 
Equivalence Classes (multiple graphs that fit the data equally well) rather than a unique 
causal structure. Conversely, LLMs possess vast domain knowledge but are prone to 
hallucination. FinCARE fuses these by using the LLM to generate a "prior" structure that 
constrains the statistical search. 
 

1.​ Causal Relationship Extraction: An LLM processes vast corpora of unstructured 
financial documents (e.g., SEC 10-K filings, earnings call transcripts). It extracts 
potential causal triplets, such as (Company A) -\> -\> (Company B) or (Interest 
Rates) -\> \[Negatively\_Impacts\] -\> (Housing Starts)1. 

2.​ Knowledge Graph (KG) Construction: These extractions are assembled into a 
Financial Knowledge Graph (FinReflectKG). Crucially, edges are scored based on 
a composite metric of Strength (confidence of extraction), Frequency (mention 
count), and Coverage (cross-validation across sources)12. 
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3.​ Constraint Injection: These scored relationships are injected as constraints into 
statistical causal discovery algorithms. 

●​ High-confidence links become "Required Edges" (the model must consider them). 
●​ Illogical or biologically/economically impossible links become "Forbidden Edges" 

(the model cannot use them). 
●​ This dramatically reduces the search space for the algorithm, preventing it from 

identifying spurious correlations (e.g., correlating stock prices with sunspots). 
 
 
 
 
 
 
 
 
 
 
Empirical Validation: 
 
The FinCARE study demonstrates that this hybrid approach drastically outperforms 
traditional statistical methods in recovering the true causal graph of financial networks. By 
using KG constraints: 
 

Algorithm Base F1 Score Constrained F1 
Score Improvement 

PC Algorithm 0.459 0.622 36% 

GES Algorithm 0.367 0.735 100% 

NOTEARS 0.163 0.759 366% 

 
These results validate that domain knowledge, when encoded structurally, allows 
algorithms to "see" causal links that are statistically weak but economically significant12. 

4.2 The Regulatory Payoff: Auditable Explanations 
This approach solves the explainability problem by design. The model's reasoning is no 
longer a "black box" of weights; it is a transparent causal graph. An output looks like: 
"The model predicts a revenue decline for Company A because its primary supplier, 
Company B, is facing a strike (verified by news reports) and there is a verified causal 
dependency." This directly satisfies the IAIS and BIS requirements for "meaningful 
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explanations" because the logic maps to real-world entities and relationships, not abstract 
vectors1. 

5. Pillar 2: Physics-Informed Neural Networks (PINNs) for 
Structural Integrity 
The second pillar addresses the "Startup Dilemma" (data inefficiency) and the lack of 
structural integrity. Financial markets, like physical systems, are governed by 
fundamental laws (e.g., no-arbitrage conditions, option pricing PDEs). Physics-Informed 
Neural Networks (PINNs) embed these laws directly into the neural network's loss 
function. 

5.1 Mechanics of PINNs in Finance 
A standard neural network minimizes a data-driven loss ( ), typically the Mean 
Squared Error between predictions and observed labels. A PINN adds a "Physics Loss" 
($\mathcal{L}{PDE}$) derived from the governing differential equation (e.g., the 
Black-Scholes PDE for option pricing). 
 
The total loss function becomes: 
 

 
 
where  measures the "residual"—the degree to which the network's prediction 
violates the known financial law. 
 
Advantages for Financial Modeling: 
 

1.​ Data Efficiency: The model is "born" knowing the rules of finance. Research 
shows PINNs can solve option pricing problems with zero or very sparse labeled 
data2. This effectively bypasses the "Cold Start" problem for startups, as they do 
not need to purchase expensive historical option data to train a valid pricer. 

2.​ Structural Consistency: The model is constrained to output prices that are 
consistent with no-arbitrage principles. A standard ML model might predict a 
negative option price or an arbitrage opportunity due to overfitting noise; a PINN is 
penalized heavily for such violations, ensuring "physical" plausibility15. 

3.​ Computational Speed: Once trained, a PINN acts as a "neural surrogate" that is 
orders of magnitude faster than traditional numerical solvers (like Finite Difference 
Methods or Monte Carlo simulations). For high-dimensional problems, PINNs avoid 
the "curse of dimensionality" that plagues grid-based methods16. 
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5.2 Managing Tail Risk: Residual Risk-Aware PINNs (RRaPINNs) 
A critical limitation of standard PINNs (and standard ML) is that they minimize average 
error (MSE). In finance, risk is concentrated in the tails—the extreme events. A model that 
is accurate on average but fails during a market crash is useless for risk management. 
Standard PINNs can exhibit "propagation failure," where the solution is accurate in the 
bulk of the domain but violates the PDE in critical, high-gradient regions (e.g., near the 
strike price at maturity)17. 
 
To address this, we advocate for Residual Risk-Aware PINNs (RRaPINNs). This advanced 
architecture changes the optimization objective from minimizing MSE to minimizing the 
Conditional Value-at-Risk (CVaR) of the residuals17. 
 
Methodology: 
 
The RRaPINN formulation replaces the standard loss with a risk-averse objective: 
 

 
 
where  is the PDE residual and  is the confidence level (e.g., 95%). Because CVaR is 
coherent and convex, it provides dense, informative gradients even from the tail of the 
distribution. 
 
To improve optimization stability, RRaPINNs often utilize a Mean-Excess (ME) surrogate 
penalty. This penalty explicitly targets the worst-case errors—the "tail residuals" that 
occur in high-volatility regions—by penalizing the positive excess of the residual tail 
beyond an adaptive tolerance 17. 
 
Impact: 
 
This forces the model to focus its learning capacity on the "hardest" parts of the problem 
(e.g., deep out-of-the-money options or regime shifts). Empirical benchmarks on PDEs 
show that RRaPINNs significantly reduce the maximum error (  norm) and the tail 
distribution of errors compared to standard PINNs. This ensures the model remains robust 
even in "Black Swan" scenarios, making it suitable for stress-testing liquidation engines17. 

5.3 Application: American Option Pricing 
Pricing American options (which can be exercised early) is computationally expensive 
because it involves a "free-boundary" problem. The boundary between the region where 
you should hold the option and the region where you should exercise it is unknown and 
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moves over time. Traditional methods (like Finite Difference) require dense grids and are 
computationally intensive. 
 
PINNs solve this by treating the early exercise condition as an inequality constraint in the 
loss function. Recent studies confirm that PINNs can accurately price American options 
and compute Greeks (sensitivities like Delta and Gamma) efficiently via automatic 
differentiation. This offers a mesh-free global solution valid for any asset price and 
time-to-maturity14. 
 
By utilizing PINNs, financial institutions can obtain pricing models that are not only faster 
but also mathematically guaranteed to respect the boundary conditions of the contract, 
providing a level of structural assurance that purely data-driven models cannot match. 

6. Pillar 3: Conformal Prediction (CP) for Guaranteed 
Uncertainty 
The third pillar addresses the unreliable uncertainty estimation of "Black Box" models. 
Risk management requires not just a point prediction (e.g., "The stock will be $100"), but 
a rigorous interval (e.g., "The stock will be between $95 and $105 with 95% probability"). 
Traditional methods like Value-at-Risk (VaR) rely on distributional assumptions (e.g., 
normality) that are frequently violated in real-world financial markets, leading to 
catastrophic underestimation of risk during crises. 

6.1 The Validity Problem: Exchangeability vs. Non-Stationarity 
Conformal Prediction (CP) is a distribution-free framework that provides finite-sample 
coverage guarantees. A 95% conformal prediction interval is mathematically guaranteed 
to contain the true value 95% of the time, regardless of the underlying distribution of the 
data (Normal, heavy-tailed, skewed, etc.)19. 
 
However, standard CP relies on the assumption of exchangeability—that the data points 
are drawn from the same distribution and their order does not matter. Financial time series 
violate this assumption; they are non-stationary, exhibiting volatility clustering, regime 
shifts, and trends. Applying standard CP to financial data often results in intervals that 
lose validity during volatility spikes (under-coverage) or become inefficiently wide during 
calm periods (over-coverage)20. 

6.2 The Solution: Temporal Conformal Prediction (TCP) 
To resolve this, we introduce Temporal Conformal Prediction (TCP), specifically variants 
like TCP-RM (Robbins-Monro) or Adaptive Conformal Inference (ACI). These methods are 
designed for non-exchangeable, sequential data. 
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Mechanism: 
 
TCP employs an online feedback loop to dynamically calibrate the width of the prediction 
interval. It monitors the "coverage error" (did the previous interval cover the true value?) 
at each time step. 
 

●​ If the model under-covers (errors are too frequent), the algorithm increases the 
scaling factor, widening the next interval. 

●​ If the model over-covers (intervals are too conservative), it decreases the scaling 
factor, shrinking the interval. 

 
This "adaptive calibration" allows the model to react to changing market regimes in 
real-time20. 

6.3 Empirical Evidence: The COVID-19 Stress Test 
The superiority of TCP was starkly demonstrated during the COVID-19 market crash 
(March 2020), a period of extreme volatility that broke many traditional risk models. A 
benchmarking study compared TCP against GARCH (a standard econometric volatility 
model) and Historical Simulation (a standard VaR approach) across three asset classes: 
S&P 500, Bitcoin, and Gold20. 
 
Results Summary (Target Coverage: 95%) 
 
 

Asset Model Empirical 
Coverage 

Average 
Interval Width Behavior During Crisis 

S&P 500 TCP 95.2% 5.21 Intervals widened immediately 
at volatility onset. 

 GARCH 82.7% 3.05 Failed to adapt; consistently 
under-estimated risk. 

 Hist. Sim. 93.1% 5.06 Reacted with a lag; slow to 
capture the spike. 

Bitcoin TCP 95.4% 20.89 Maintained valid coverage 
despite extreme crypto 
volatility. 

 GARCH 85.3% 11.39 Dangerous under-coverage. 
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Implications: 
 
The GARCH model produced "sharper" (narrower) intervals, which might appear more 
precise to a naive user. However, this sharpness came at the cost of validity; it 
demonstrated an empirical under-coverage relative to the target rate in this study's test 
period. In a leverage-constrained environment, this underestimation leads to margin calls 
and liquidation cascades. 
 
TCP, by contrast, prioritized validity. It sacrificed sharpness (wider intervals) to maintain 
the 95% coverage guarantee. During the crash, TCP intervals "inflated" instantly to 
capture the volatility, mitigating the risk of extreme underestimation during stress events. 
This research indicates that TCP provides a statistically more robust standard for 
regulatory capital calculations, where the primary goal is solvency and safety, not just 
precision20. 

7. Case Study: Mitigating Risk in Fintech Lending 
To demonstrate the practical necessity of this framework, we examine the failure modes 
of legacy Fintech lending models during the COVID-19 pandemic and how Structural 
Causal AI provides a remedy. This sector serves as a microcosm for the broader "data vs. 
structure" debate. 

7.1 Failures of Correlation-Based Pricing 
Fintech lenders entered the market with the promise of using "Big Data" and advanced 
algorithms to price risk more accurately than traditional banks. However, NBER research 
reveals that during the stress of the pandemic, these models reverted to simple, brittle 
correlations. 
 

●​ Pricing Failure: Instead of leveraging their advanced data to distinguish risk, 
Fintech lenders charged a massive 45% premium on interest rates for nonprime 
borrowers compared to prime borrowers with similar default risk21. This 
inefficiency was driven by an over-reliance on traditional FICO scores as a 
"catch-all" proxy for risk. The algorithms, unable to process the structural break of 
the pandemic, defaulted to a coarse heuristic: "low FICO = high risk," ignoring 
other predictive variables that remained stable. 

●​ Constraint Failure: Algorithms failed to account for structural constraints like 
funding liquidity. Fintech lenders often rely on securitization markets to fund 
loans. When these markets tightened, lenders indiscriminately cut credit supply. 
The models were trained on borrower-level correlations and were blind to this 
systemic, lender-level constraint1. 
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7.2 The Structural Solution: RappiCard and Alternative Data 
A contrasting study of RappiCard in Mexico demonstrates the power of Structural Causal 
AI using alternative data to bridge the credit gap for unbanked populations22. 
 

●​ The Problem: Most applicants in Mexico lack a credit bureau history ("thin-file"), 
making them invisible to traditional FICO-based models. 

●​ The Structural Approach: RappiCard utilized a causal model based on digital 
transaction history from its delivery app (e.g., order frequency, tips, payment 
velocity). Instead of relying on a proxy like FICO, the model identified a causal 
pathway:​
Transaction Volume -\> Cash Flow Velocity -\> Repayment Capacity 

●​ Results: The machine learning model using this alternative data achieved an AUC 
(Area Under the Curve) of 0.752, significantly outperforming traditional metrics. 

●​ Fairness Intervention: By applying a gender-segmented structural model 
(recognizing that women and men may have different causal drivers for repayment 
due to socioeconomic factors), the lender improved fairness. The segmented 
model approved 12.3% of women who would have been rejected by a pooled 
(gender-blind) model, without increasing the default rate22. 

 
Implication: A structural approach allows lenders to disentangle ability to repay from 
historical bias (lack of credit history). By mapping the causal structure of cash flows, 
lenders can safely extend credit to underserved populations, solving both a business 
problem (market expansion) and a regulatory problem (fair lending). 

8. Conclusion: The "Glass Box" Standard 
The reliance on data-hungry, correlation-based "Black Box" AI is no longer a viable 
strategy for modern finance. It is epistemically fragile, legally dangerous, and 
economically inefficient. The "illusion of competence" provided by LLMs and standard 
deep learning models shatters under the stress of non-stationary markets and rigorous 
regulatory scrutiny. 
 
This report validates Structural Causal AI as the new gold standard for model risk 
management. By synthesizing the three pillars detailed in this analysis, financial 
institutions can engineer "Glass Box" systems that meet the demands of the modern era. 
 

1.​ Structural Causal Models (SCMs) provide verifiable logic. Through frameworks 
like FinCARE, firms can map the causal pathways of risk (Level 3 Causality), 
ensuring that model outputs are driven by economic reality rather than spurious 
correlation. This directly satisfies the "meaningful explainability" mandates of the 
BIS and SEC. 
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2.​ Physics-Informed Neural Networks (PINNs) provide structural integrity. By 
embedding financial laws into the loss function, and specifically utilizing RRaPINNs 
to minimize tail risk (CVaR), firms can build models that are robust to "Black Swan" 
events and data-efficient enough to solve the "Startup Dilemma." 

3.​ Temporal Conformal Prediction (TCP) provides guaranteed uncertainty. By 
replacing heuristic measures like VaR with mathematically valid prediction intervals 
that adapt to non-stationarity, firms can ensure solvency during crises, as 
evidenced by TCP's superior performance during the COVID-19 crash. 

 
For incumbents and startups alike, the transition to Structural Causal AI is not an 
option—it is an existential imperative. It represents the shift from modeling the shadows 
of the market (correlation) to modeling the machinery of the market (causation) 
 
c 

9. List of Abbreviations 
●​ AI: Artificial Intelligence 

●​ AUC: Area Under the Curve (Receiver Operating Characteristic) 

●​ BIS: Bank for International Settlements 

●​ CHT: Causal Hierarchy Theorem 

●​ CP: Conformal Prediction 

●​ CVaR: Conditional Value-at-Risk 

●​ GARCH: Generalized Autoregressive Conditional Heteroskedasticity 

●​ IAIS: International Association of Insurance Supervisors 

●​ KG: Knowledge Graph 

●​ LLM: Large Language Model 

●​ ME: Mean-Excess (Penalty) 

●​ MSE: Mean Squared Error 

●​ PDE: Partial Differential Equation 

●​ PINN: Physics-Informed Neural Network 

●​ RRaPINN: Residual Risk-Aware PINN 

●​ SCM: Structural Causal Model 

●​ SEC: U.S. Securities and Exchange Commission 

●​ TCP: Temporal Conformal Prediction 
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●​ VaR: Value-at-Risk 
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IMPORTANT LEGAL DISCLOSURES AND DISCLAIMERS 
 
1. General Disclaimers and No Investment Advice. 
This document, "Ascending Pearl's Ladder—Operationalizing the Causal Hierarchy in Financial 
Modeling," is published by Aleatoric Systems for informational and discussion purposes only. It 
is intended solely for academic, research, and general market education and does not constitute 
a recommendation, solicitation, offer, or advice to purchase or sell any security, financial 
instrument, or digital asset, or to engage in any specific investment strategy. The financial, 
regulatory, and technical concepts discussed are complex and should not be relied upon without 
independent professional advice. Aleatoric Systems is not a registered investment advisor, 
broker-dealer, or financial institution. The views expressed are those of the author(s) and do not 
necessarily reflect the opinion of any other entity. 
 
2. Limitation of Warranty and Liability. 
The information and models described herein (including, without limitation, Structural Causal AI, 
SCMs, FinCARE, PINNs, RRaPINNs, and TCP) are provided "AS IS" without any warranties of 
any kind, express or implied. Past performance, simulated or hypothetical results, or model 
backtests are not guarantees or reliable indicators of future performance. Financial modeling is 
inherently subject to significant risks and uncertainties, and no representation is made that any 
account will or is likely to achieve profits or losses similar to those discussed. Aleatoric Systems 
expressly disclaims all liability for any direct, indirect, special, incidental, consequential, or 
punitive damages arising from the use of, or reliance on, this white paper. 
 
3. Intellectual Property and Proprietary Information. 
The content of this white paper, including all frameworks, methodologies, and concepts 
described herein (such as FinCARE, RRaPINNs, and Temporal Conformal Prediction), are the 
valuable intellectual property of Aleatoric Systems. All rights are reserved. No part of this 
document may be reproduced, stored, or transmitted in any form or by any means without the 
prior written permission of Aleatoric Systems. The frameworks and systems may be subject to 
pending or registered patents, trademarks, and copyrights. 
 
4. Digital Asset Risk Notice. 
Any discussion of digital assets (e.g., stablecoins, cryptocurrencies) is for illustrative, 
educational, or case-study purposes only. Digital assets are highly volatile, involve a high 
degree of risk, and may be deemed securities in various jurisdictions, including under U.S. SEC 
jurisdiction, depending on the facts and circumstances. The regulatory landscape is uncertain 
and subject to change. 
 
Section: 5. Governing Law and Dispute Resolution.  
All matters concerning the interpretation, validity, and enforcement of the Intellectual Property 
and Proprietary Information rights claimed in Section 3 shall be governed by and construed in 
accordance with the laws of the State of Illinois, USA, without regard to conflict of law principles. 

Aleatoric Systems 2025  


	Ascending Pearl's Ladder 
	Abstract 
	1. The Epistemic Crisis in Modern Financial Intelligence 
	1.1 The Illusion of Competence: "Potemkin Interpretation" and Brittleness 
	1.2 Systemic Feedback Loops and Endogenous Risk 
	1.3 The Economic Barrier: The "Startup Dilemma" 

	2. The Regulatory Pivot: From Passive Guidance to Active Enforcement 
	2.1 The SEC and the Crackdown on "AI Washing" 
	2.2 Global Mandates for "Meaningful Explainability" 

	3. Theoretical Framework: Ascending the Causal Hierarchy 
	3.1 The Causal Hierarchy (Pearl's Ladder) 

	4. Pillar 1: Structural Causal Models (SCMs) for Verifiable Logic 
	4.1 The FinCARE Framework: A Hybrid Discovery Pipeline 
	4.2 The Regulatory Payoff: Auditable Explanations 

	5. Pillar 2: Physics-Informed Neural Networks (PINNs) for Structural Integrity 
	5.1 Mechanics of PINNs in Finance 
	5.2 Managing Tail Risk: Residual Risk-Aware PINNs (RRaPINNs) 
	5.3 Application: American Option Pricing 

	6. Pillar 3: Conformal Prediction (CP) for Guaranteed Uncertainty 
	6.1 The Validity Problem: Exchangeability vs. Non-Stationarity 
	6.2 The Solution: Temporal Conformal Prediction (TCP) 
	6.3 Empirical Evidence: The COVID-19 Stress Test 

	7. Case Study: Mitigating Risk in Fintech Lending 
	7.1 Failures of Correlation-Based Pricing 
	7.2 The Structural Solution: RappiCard and Alternative Data 

	8. Conclusion: The "Glass Box" Standard 
	9. List of Abbreviations 
	Works cited 



