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Abstract

The integration of correlation-based artificial intelligence (Al)... has created significant systemic
risk challenges, exposed model brittleness, and highlighted a lack of causal understanding. This
has been linked to significant model failures (e.g., TerraUSD collapse) and has contributed to an
increasing regulatory focus on "meaningful explainability”... which may render opaque "Black
Box" models sub-optimal for critical regulatory functions. This report advocates for Structural
Causal Al as a robust, auditable framework to meet these challenges, moving financial
modeling from Level 1 (Association) to Level 3 (Counterfactuals) of Pearl's Causal Hierarchy.
This architecture is built on three pillars:

1. Structural Causal Models (SCMs): Utilizing frameworks like FINCARE, which fuses
LLM-extracted causal knowledge with statistical algorithms to create transparent,
auditable causal graphs that provide verifiable logic for regulatory compliance.

2. Physics-Informed Neural Networks (PINNs): Embedding financial laws (e.g.,
no-arbitrage) directly into the model's loss function. Advanced variants, RRaPINNs,
minimize the Conditional Value-at-Risk (CVaR) of model residuals to ensure structural
integrity and robust performance in high-volatility "tail risk" scenarios. PINNs also solve
the "Startup Dilemma™ by enabling competitive modeling with minimal data.

3. Temporal Conformal Prediction (TCP): A distribution-free framework that provides
guaranteed uncertainty and prediction intervals that dynamically adapt to
non-stationary market regimes, proving superior to traditional risk metrics like VaR during
the COVID-19 stress test.

Structural Causal Al synthesizes these elements to create "Glass Box" systems, shifting the

industry from modeling the shadows of the market (correlation) to modeling its core machinery
(causation).
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1. The Epistemic Crisis in Modern Financial Intelligence

The integration of artificial intelligence into the global financial architecture has
precipitated a profound epistemic crisis, characterized by a dangerous divergence
between the perceived competence of algorithmic systems and their actual structural
reliability. While the proliferation of deep learning agents and Large Language Models
(LLMs) has delivered superficial efficiencies in information synthesis and automated
decision-making, it has simultaneously introduced a class of systemic risks that are
poorly understood and difficult to quantify using traditional metrics. This report argues
that the era of unconstrained data mining is ending, driven by a convergence of
catastrophic model failures during recent market crises and a stringent new global
regulatory regime demanding "meaningful explainability."

The central thesis of this analysis is that the current generation of Al models—built
primarily on the statistical correlation of historical data—suffers from a fundamental
"epistemic gap." These models function as what recent scholarship describes as
"stochastic parrots" or engines of "Potemkin interpretation"1. They generate outputs that
possess the facade of expert reasoning but lack any grounding in the causal mechanisms
that govern financial markets. In high-stakes environments, such as capital determination,
credit underwriting, and systemic risk monitoring, this lack of understanding is not merely
a technical limitation; it is a source of endogenous risk that threatens the stability of the
financial system itself.

1.1 The lllusion of Competence: "Potemkin Interpretation" and
Brittleness

Current Al models, particularly Generative Al and deep neural networks, exhibit a
phenomenon best described as "superficial fluency." These systems produce
outputs—whether code, market analysis, or risk assessments—that appear correct and
authoritative but are often "brittle and frequently arbitrary"1. This brittleness is empirically
demonstrated by the phenomenon of "prompting instability," where minor, semantically
irrelevant perturbations to an input prompt can lead to diametrically opposed outputs. For
instance, research indicates that changing a prompt from asking a model to "explore" a
company's financial distress to asking it to "delve" into the same data can cause
significantly different risk classifications’.

This introduces a level of stochastic noise that is fundamentally incompatible with
fiduciary responsibility. If a model’s output is contingent on the arbitrary phrasing of a
query rather than the fundamental economic reality of the asset, it cannot serve as a
basis for robust risk management. This "reliability gap" is exacerbated by the "epistemic
gap": the uncertainty regarding what these models are actually measuring®. Proponents of
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generative interpretation in law and finance argue that LLMs can replace human judgment
in interpretive tasks. However, empirical studies show that these models do not "reason"
in any legal or economic sense; they traverse a probabilistic map of language patterns.
This distinction is critical because, unlike a human analyst whose errors can be audited
against a logic framework, an LLM's error is often a hallucination—a plausible-sounding
falsehood derived from statistical noise.

1.2 Systemic Feedback Loops and Endogenous Risk

The danger of correlation-based Al extends beyond individual model failure to the
creation of endogenous feedback loops. When multiple algorithmic agents operate on
similar flawed correlations, they can amplify market signals, detaching prices from
fundamentals and precipitating liquidity crises. The collapse of the TerraUSD (UST)
stablecoin serves as a potent case study of this "model risk"1.

Unlike traditional market crashes driven by exogenous shocks (e.g., a pandemic or
geopolitical event), the Terra collapse was a mechanism design failure exacerbated by
algorithmic feedback. The system relied on an arbitrage mechanism between the
stablecoin (UST) and its collateral token (LUNA) to maintain a peg. However, this
mechanism presupposed a level of market liquidity and uncorrelated behavior that
evaporated under stress. As the peg broke, algorithmic trading bots and smart contracts,
acting on pre-programmed correlation assumptions, executed a cascade of sell orders
that hyper-inflated the LUNA supply, driving its value to zero®.

This event highlights the critical distinction between exogenous risk (risk from the world)
and endogenous risk (risk generated by the system itself). "Black Box" models are
inherently blind to endogenous risk because they are trained on historical data where
these feedback loops may not have been active or visible. They assume the market is a
static environment to be predicted, rather than a dynamic system that reacts to their own
predictions. This report posits that Structural Causal Al is the necessary evolution to
address this blindness. By explicitly modeling the causal mechanisms—the "physics" of
the market—risk managers can simulate counterfactual scenarios where liquidity dries up
or feedback loops activate, moving beyond the limitations of historical correlation.

1.3 The Economic Barrier: The "Startup Dilemma"

Beyond the systemic and epistemic risks, the reliance on deep learning creates a
debilitating economic barrier for new market entrants, referred to here as the **"Startup
Dilemma"x**1. Deep learning models are notoriously data-hungry, often requiring millions
of labeled examples to converge to a useful solution. The cost of acquiring, cleaning, and
annotating financial data is prohibitive. Expert annotation for financial datasets—such as
labeling distressed assets in balance sheets or classifying complex derivatives—requires
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domain expertise that commands high hourly rates, often ranging from $6 to $12 per hour
or significantly higher for specialized tasks?.

This economic structure entrenches incumbents—Ilarge banks and major technology
firms—who possess proprietary data moats. Startups attempting to compete using
standard deep learning architectures face a "Cold Start" problem: they cannot afford the
data required to train a competitive model, and without a competitive model, they cannot
acquire the customers necessary to generate data. This stifles innovation and
homogenizes the modeling approaches used in the market, further increasing systemic
correlation. As we will detail in Section 6, Physics-Informed Neural Networks (PINNs)
offer a solution to this dilemma by substituting data with structure. By embedding financial
laws directly into the learning process, PINNs can solve complex pricing and risk
problems with sparse or even zero labeled data, dramatically lowering the barrier to entry
and enabling a more diverse ecosystem of models?.

2. The Regulatory Pivot: From Passive Guidance to Active
Enforcement

The regulatory landscape for Artificial Intelligence in finance has undergone a phase
transition. We have moved from an era of high-level principles and passive guidance to
one of active enforcement and specific, stringent requirements. Regulatory bodies
globally are converging on a single mandate: opacity is a liability.

2.1 The SEC and the Crackdown on "Al Washing"

In the United States, the Securities and Exchange Commission (SEC) has aggressively
targeted "Al washing"—the practice of making unsubstantiated claims about an
algorithm's capabilities. In March 2024, the SEC settled charges against two investment
advisers, Delphia (USA) Inc. and Global Predictions Inc., for making false and misleading
statements about their use of Al5.

e Delphia claimed to use "predictive algorithmic models" and "machine learning" to
analyze client data for investment decisions. Specifically, they marketed that they
used client data from social media, banking, and credit cards to "make intelligent
investment decisions." The SEC found these claims to be false; the firm was not
using the touted Al capabilities in its investment process in the manner described.

e Global Predictions marketed itself as the "first regulated Al financial advisor" and
claimed to use "Expert Al-driven forecasts." The SEC found these representations
to be unsubstantiated and penalized the firm for failing to produce documentation
supporting these claims.
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These enforcement actions, resulting in substantial civil penalties ($225,000 for Delphia
and $175,000 for Global Predictions), signal a new reality: Model failure is a legal event.
Financial institutions must be able to substantiate their claims about Al performance. If a
model is a "Black Box" whose operations cannot be verified or explained, any marketing
claim regarding its "expert" nature or "predictive power" carries significant regulatory
risk. The SEC has made it clear that "claims about prospects should have a reasonable
basis and investors should be told that basis"6. This effectively mandates a level of
transparency that pure "Black Box" models cannot provide.

2.2 Global Mandates for "Meaningful Explainability"

International standard-setting bodies are reinforcing this stance by tightening the
definition of "explainability." It is no longer sufficient to provide a "feature importance"
chart (like SHAP values) that merely indicates correlations. Regulators are demanding
explanations that reveal the causal logic of the decision.

e Bank for International Settlements (BIS): The BIS has identified opaque models as
a direct prudential concern. In its reports on Al in the financial sector, The BIS
emphasizes that a model whose results lack auditable transparency or
reproducibility presents a high prudential concern for critical business areas... The
BIS has indicated that "supervisory authorities may have reduced confidence in
the results of an Al model that lacks sufficient explainability."

e International Association of Insurance Supervisors (IAIS): The IAIS has defined
"meaningful explanations" as providing "understandable, transparent, and
relevant insights" into the decision-making process1. This definition pushes
beyond technical transparency to "mental model alignment"—the explanation must
make sense to a human domain expert. An explanation that relies on
high-dimensional vector math is not "meaningful” to a loan officer or a regulator.

e U.S. Regulatory Agencies: The definition of explainability is coalescing around
"how an Al approach uses inputs to produce outputs"1. This implies a mechanistic
understanding, not just a statistical one.

This regulatory environment creates a binary outcome for financial firms: build "Glass
Box" models that are inherently explainable and structurally sound, or risk being locked
out of high-value enterprise markets and facing enforcement actions. The "move fast and
break things" era for financial Al is effectively over; the new era demands "move
deliberately and prove it."

3. Theoretical Framework: Ascending the Causal Hierarchy

To meet these regulatory and epistemic challenges, financial modeling must transcend
"objective metrics" of accuracy (like Mean Squared Error or AUC) and adopt Structural
Fidelity as the primary standard. This requires a theoretical framework that distinguishes
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between different types of information. We utilize the Causal Hierarchy Theorem (CHT),
formalized by Judea Pearl and recently adapted for financial contexts’.

3.1 The Causal Hierarchy (Pearl's Ladder)

The CHT posits that causal information is structured in three distinct levels. Information at
a lower level cannot answer questions at a higher level without additional structural
assumptions. This theorem proves that no amount of Level 1 data (correlation) can
produce Level 2 or Level 3 knowledge without a model of the underlying mechanism.

Level 1: Association (Seeing)

Question: "What if | see X?" (e.g., "How does the stock price correlate with
interest rates?")

Current State: This is the domain of standard Machine Learning and Large
Language Models. These systems are excellent at pattern recognition and curve
fitting.

Limitation: They are prone to the "Correlation-Causality Fallacy." For example,
standard linear metrics often miss significant nonlinear causality between markets,
leading risk managers to underestimate true asset connectivity during a crisis’. A
model might learn that "umbrella sales" correlate with "traffic accidents" (both
caused by rain) and erroneously predict that banning umbrellas will reduce
accidents. In finance, this manifests as models learning spurious correlations that
vanish during regime shifts.

Level 2: Intervention (Doing)

Question: "What if | do X?" (e.g., "What will happen to liquidity if the central bank
raises rates?" or "What happens if we liquidate this position?")

Requirement: Answering this requires a model of the mechanism, not just a
historical pattern. It requires understanding the direction of causality.

Financial Relevance: This is critical for policy making and active portfolio
management. It distinguishes between a passive observation and an active change
in the system’.

Level 3: Counterfactuals (Imagining)

Question: "What if X had been different?" (e.g., "What would our portfolio value be
today if we had hedged yesterday?" or "Would this borrower have defaulted if they
had been given a lower interest rate?")

Requirement: This requires a fully specified Structural Causal Model (SCM) that
can simulate worlds that never occurred.
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e Financial Relevance: This is the core of rigorous risk management, stress testing,
and liability management. It allows firms to test their resilience against "Black
Swan" events that have not yet happened but are structurally possible’.

The proposed Structural Causal Al standard explicitly targets Level 2 and Level 3. By
modeling the underlying mechanisms (the "structure"), these systems can answer
interventional and counterfactual questions, providing the "meaningful explainability"
regulators demand.

4. Pillar 1: Structural Causal Models (SCMs) for Verifiable
Logic

The first pillar of the proposed architecture addresses the flaw of logic. Structural Causal
Models (SCMs) provide a framework where the relationships between variables are
defined by directed edges in a graph, representing causal influence rather than mere
statistical association.

4.1 The FinCARE Framework: A Hybrid Discovery Pipeline

Constructing SCMs for finance is challenging due to the complexity and dimensionality of
the system. We propose a hybrid pipeline, validated by the FinCARE (Financial Causal
Analysis with Reasoning and Evidence) framework, which integrates Large Language
Models (LLMs) with statistical causal discovery algorithms to overcome the limitations of
eachTl.

The Methodology:

The FinCARE framework operates on the premise that while statistical algorithms (like PC
or GES) are rigorous, they struggle with "weak signals" and often produce Markov
Equivalence Classes (multiple graphs that fit the data equally well) rather than a unique
causal structure. Conversely, LLMs possess vast domain knowledge but are prone to
hallucination. FInCARE fuses these by using the LLM to generate a "prior" structure that
constrains the statistical search.

1. Causal Relationship Extraction: An LLM processes vast corpora of unstructured
financial documents (e.g., SEC 10-K filings, earnings call transcripts). It extracts
potential causal triplets, such as (Company A) -\> -\> (Company B) or (Interest
Rates) -\> \[Negatively\_Impacts\] -\> (Housing Starts)1.

2. Knowledge Graph (KG) Construction: These extractions are assembled into a
Financial Knowledge Graph (FinReflectKG). Crucially, edges are scored based on
a composite metric of Strength (confidence of extraction), Frequency (mention
count), and Coverage (cross-validation across sources)™.
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3. Constraint Injection: These scored relationships are injected as constraints into
statistical causal discovery algorithms.
High-confidence links become "Required Edges" (the model must consider them).
lllogical or biologically/economically impossible links become "Forbidden Edges"
(the model cannot use them).

e This dramatically reduces the search space for the algorithm, preventing it from
identifying spurious correlations (e.g., correlating stock prices with sunspots).

Empirical Validation:
The FinCARE study demonstrates that this hybrid approach drastically outperforms

traditional statistical methods in recovering the true causal graph of financial networks. By
using KG constraints:

Constrained F1

Algorithm Base F1 Score Score Improvement
PC Algorithm 0.459 0.622 36%

GES Algorithm  0.367 0.735 100%
NOTEARS 0.163 0.759 366%

These results validate that domain knowledge, when encoded structurally, allows
algorithms to "see" causal links that are statistically weak but economically significant™.

4.2 The Regulatory Payoff: Auditable Explanations

This approach solves the explainability problem by design. The model's reasoning is no
longer a "black box" of weights; it is a transparent causal graph. An output looks like:
"The model predicts a revenue decline for Company A because its primary supplier,
Company B, is facing a strike (verified by news reports) and there is a verified causal
dependency." This directly satisfies the IAIS and BIS requirements for "meaningful

Aleatoric Systems 2025



explanations" because the logic maps to real-world entities and relationships, not abstract
vectors'.

5. Pillar 2: Physics-Informed Neural Networks (PINNs) for
Structural Integrity

The second pillar addresses the "Startup Dilemma" (data inefficiency) and the lack of
structural integrity. Financial markets, like physical systems, are governed by
fundamental laws (e.g., no-arbitrage conditions, option pricing PDEs). Physics-Informed
Neural Networks (PINNs) embed these laws directly into the neural network's loss
function.

5.1 Mechanics of PINNs in Finance

A standard neural network minimizes a data-driven loss (Ldata), typically the Mean
Squared Error between predictions and observed labels. A PINN adds a "Physics Loss"
($\mathcal{L}{PDE}$) derived from the governing differential equation (e.g., the
Black-Scholes PDE for option pricing).

The total loss function becomes:

Ltotal = Ldata + )\EPDE

where Lppr measures the "residual"—the degree to which the network's prediction
violates the known financial law.

Advantages for Financial Modeling:

1. Data Efficiency: The model is "born" knowing the rules of finance. Research
shows PINNs can solve option pricing problems with zero or very sparse labeled
data2. This effectively bypasses the "Cold Start" problem for startups, as they do
not need to purchase expensive historical option data to train a valid pricer.

2. Structural Consistency: The model is constrained to output prices that are
consistent with no-arbitrage principles. A standard ML model might predict a
negative option price or an arbitrage opportunity due to overfitting noise; a PINN is
penalized heavily for such violations, ensuring "physical" plausibility™.

3. Computational Speed: Once trained, a PINN acts as a "neural surrogate" that is
orders of magnitude faster than traditional numerical solvers (like Finite Difference
Methods or Monte Carlo simulations). For high-dimensional problems, PINNs avoid
the "curse of dimensionality" that plagues grid-based methods™.
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5.2 Managing Tail Risk: Residual Risk-Aware PINNs (RRaPINNs)

A critical limitation of standard PINNs (and standard ML) is that they minimize average
error (MSE). In finance, risk is concentrated in the tails—the extreme events. A model that
is accurate on average but fails during a market crash is useless for risk management.
Standard PINNs can exhibit "propagation failure," where the solution is accurate in the
bulk of the domain but violates the PDE in critical, high-gradient regions (e.g., near the
strike price at maturity)".

To address this, we advocate for Residual Risk-Aware PINNs (RRaPINNs). This advanced
architecture changes the optimization objective from minimizing MSE to minimizing the
Conditional Value-at-Risk (CVaR) of the residuals”.

Methodology:
The RRaPINN formulation replaces the standard loss with a risk-averse objective:

mgin CVaRa(|R(ub)))

where R is the PDE residual and « is the confidence level (e.g., 95%). Because CVaR is
coherent and convex, it provides dense, informative gradients even from the tail of the
distribution.

To improve optimization stability, RRaPINNs often utilize a Mean-Excess (ME) surrogate
penalty. This penalty explicitly targets the worst-case errors—the "tail residuals" that
occur in high-volatility regions—by penalizing the positive excess of the residual tail
beyond an adaptive tolerance ¢".

Impact:

This forces the model to focus its learning capacity on the "hardest" parts of the problem
(e.g., deep out-of-the-money options or regime shifts). Empirical benchmarks on PDEs
show that RRaPINNs significantly reduce the maximum error (L norm) and the tail
distribution of errors compared to standard PINNs. This ensures the model remains robust
even in "Black Swan" scenarios, making it suitable for stress-testing liquidation engines”.

5.3 Application: American Option Pricing

Pricing American options (which can be exercised early) is computationally expensive
because it involves a "free-boundary" problem. The boundary between the region where
you should hold the option and the region where you should exercise it is unknown and
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moves over time. Traditional methods (like Finite Difference) require dense grids and are
computationally intensive.

PINNSs solve this by treating the early exercise condition as an inequality constraint in the
loss function. Recent studies confirm that PINNs can accurately price American options
and compute Greeks (sensitivities like Delta and Gamma) efficiently via automatic
differentiation. This offers a mesh-free global solution valid for any asset price and
time-to-maturity™.

By utilizing PINNs, financial institutions can obtain pricing models that are not only faster
but also mathematically guaranteed to respect the boundary conditions of the contract,
providing a level of structural assurance that purely data-driven models cannot match.

6. Pillar 3: Conformal Prediction (CP) for Guaranteed
Uncertainty

The third pillar addresses the unreliable uncertainty estimation of "Black Box" models.
Risk management requires not just a point prediction (e.g., "The stock will be $100"), but
a rigorous interval (e.g., "The stock will be between $95 and $105 with 95% probability").
Traditional methods like Value-at-Risk (VaR) rely on distributional assumptions (e.g.,
normality) that are frequently violated in real-world financial markets, leading to
catastrophic underestimation of risk during crises.

6.1 The Validity Problem: Exchangeability vs. Non-Stationarity

Conformal Prediction (CP) is a distribution-free framework that provides finite-sample
coverage guarantees. A 95% conformal prediction interval is mathematically guaranteed
to contain the true value 95% of the time, regardless of the underlying distribution of the
data (Normal, heavy-tailed, skewed, etc.)™.

However, standard CP relies on the assumption of exchangeability—that the data points
are drawn from the same distribution and their order does not matter. Financial time series
violate this assumption; they are non-stationary, exhibiting volatility clustering, regime
shifts, and trends. Applying standard CP to financial data often results in intervals that
lose validity during volatility spikes (under-coverage) or become inefficiently wide during
calm periods (over-coverage)®.

6.2 The Solution: Temporal Conformal Prediction (TCP)

To resolve this, we introduce Temporal Conformal Prediction (TCP), specifically variants
like TCP-RM (Robbins-Monro) or Adaptive Conformal Inference (ACI). These methods are
designed for non-exchangeable, sequential data.
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Mechanism:

TCP employs an online feedback loop to dynamically calibrate the width of the prediction
interval. It monitors the "coverage error" (did the previous interval cover the true value?)
at each time step.

e If the model under-covers (errors are too frequent), the algorithm increases the
scaling factor, widening the next interval.

e If the model over-covers (intervals are too conservative), it decreases the scaling
factor, shrinking the interval.

This "adaptive calibration" allows the model to react to changing market regimes in
real-time20.

6.3 Empirical Evidence: The COVID-19 Stress Test

The superiority of TCP was starkly demonstrated during the COVID-19 market crash
(March 2020), a period of extreme volatility that broke many traditional risk models. A
benchmarking study compared TCP against GARCH (a standard econometric volatility
model) and Historical Simulation (a standard VaR approach) across three asset classes:
S&P 500, Bitcoin, and Gold20.

Results Summary (Target Coverage: 95%)

Empirical Average . . .

Asset Model Coverage Interval Width Behavior During Crisis

S&P 500 TCP 95.2% 5.21 Intervals widened immediately
at volatility onset.

GARCH 82.7% 3.05 Failed to adapt; consistently
under-estimated risk.

Hist. Sim. 931% 5.06 Reacted with a lag; slow to
capture the spike.

Bitcoin TCP 95.4% 20.89 Maintained valid coverage
despite extreme crypto
volatility.

GARCH 85.3% 11.39 Dangerous under-coverage.
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Implications:

The GARCH model produced "sharper" (narrower) intervals, which might appear more
precise to a naive user. However, this sharpness came at the cost of validity; it
demonstrated an empirical under-coverage relative to the target rate in this study's test
period. In a leverage-constrained environment, this underestimation leads to margin calls
and liquidation cascades.

TCP, by contrast, prioritized validity. It sacrificed sharpness (wider intervals) to maintain
the 95% coverage guarantee. During the crash, TCP intervals "inflated" instantly to
capture the volatility, mitigating the risk of extreme underestimation during stress events.
This research indicates that TCP provides a statistically more robust standard for
regulatory capital calculations, where the primary goal is solvency and safety, not just
precision?.

7. Case Study: Mitigating Risk in Fintech Lending

To demonstrate the practical necessity of this framework, we examine the failure modes
of legacy Fintech lending models during the COVID-19 pandemic and how Structural
Causal Al provides a remedy. This sector serves as a microcosm for the broader "data vs.
structure" debate.

7.1 Failures of Correlation-Based Pricing

Fintech lenders entered the market with the promise of using "Big Data" and advanced
algorithms to price risk more accurately than traditional banks. However, NBER research
reveals that during the stress of the pandemic, these models reverted to simple, brittle
correlations.

e Pricing Failure: Instead of leveraging their advanced data to distinguish risk,
Fintech lenders charged a massive 45% premium on interest rates for nonprime
borrowers compared to prime borrowers with similar default risk21. This
inefficiency was driven by an over-reliance on traditional FICO scores as a
"catch-all" proxy for risk. The algorithms, unable to process the structural break of
the pandemic, defaulted to a coarse heuristic: "low FICO = high risk," ignoring
other predictive variables that remained stable.

e Constraint Failure: Algorithms failed to account for structural constraints like
funding liquidity. Fintech lenders often rely on securitization markets to fund
loans. When these markets tightened, lenders indiscriminately cut credit supply.
The models were trained on borrower-level correlations and were blind to this
systemic, lender-level constraint’.
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7.2 The Structural Solution: RappiCard and Alternative Data

A contrasting study of RappiCard in Mexico demonstrates the power of Structural Causal
Al using alternative data to bridge the credit gap for unbanked populations?.

e The Problem: Most applicants in Mexico lack a credit bureau history ("thin-file"),
making them invisible to traditional FICO-based models.

e The Structural Approach: RappiCard utilized a causal model based on digital
transaction history from its delivery app (e.g., order frequency, tips, payment
velocity). Instead of relying on a proxy like FICO, the model identified a causal
pathway:

Transaction Volume -\> Cash Flow Velocity -\> Repayment Capacity

e Results: The machine learning model using this alternative data achieved an AUC
(Area Under the Curve) of 0.752, significantly outperforming traditional metrics.

e Fairness Intervention: By applying a gender-segmented structural model
(recognizing that women and men may have different causal drivers for repayment
due to socioeconomic factors), the lender improved fairness. The segmented
model approved 12.3% of women who would have been rejected by a pooled
(gender-blind) model, without increasing the default rate?2.

Implication: A structural approach allows lenders to disentangle ability to repay from
historical bias (lack of credit history). By mapping the causal structure of cash flows,
lenders can safely extend credit to underserved populations, solving both a business
problem (market expansion) and a regulatory problem (fair lending).

8. Conclusion: The "Glass Box" Standard

The reliance on data-hungry, correlation-based "Black Box" Al is no longer a viable
strategy for modern finance. It is epistemically fragile, legally dangerous, and
economically inefficient. The "illusion of competence" provided by LLMs and standard
deep learning models shatters under the stress of non-stationary markets and rigorous
regulatory scrutiny.

This report validates Structural Causal Al as the new gold standard for model risk
management. By synthesizing the three pillars detailed in this analysis, financial
institutions can engineer "Glass Box" systems that meet the demands of the modern era.

1. Structural Causal Models (SCMs) provide verifiable logic. Through frameworks
like FInCARE, firms can map the causal pathways of risk (Level 3 Causality),
ensuring that model outputs are driven by economic reality rather than spurious
correlation. This directly satisfies the "meaningful explainability" mandates of the
BIS and SEC.
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2. Physics-Informed Neural Networks (PINNs) provide structural integrity. By
embedding financial laws into the loss function, and specifically utilizing RRaPINNs
to minimize tail risk (CVaR), firms can build models that are robust to "Black Swan"
events and data-efficient enough to solve the "Startup Dilemma."

3. Temporal Conformal Prediction (TCP) provides guaranteed uncertainty. By
replacing heuristic measures like VaR with mathematically valid prediction intervals
that adapt to non-stationarity, firms can ensure solvency during crises, as
evidenced by TCP's superior performance during the COVID-19 crash.

For incumbents and startups alike, the transition to Structural Causal Al is not an
option—it is an existential imperative. It represents the shift from modeling the shadows
of the market (correlation) to modeling the machinery of the market (causation)

9. List of Abbreviations

e Al: Artificial Intelligence

e AUC: Area Under the Curve (Receiver Operating Characteristic)
e BIS: Bank for International Settlements

e CHT: Causal Hierarchy Theorem

e CP: Conformal Prediction

e CVaR: Conditional Value-at-Risk

e GARCH: Generalized Autoregressive Conditional Heteroskedasticity
e |AIS: International Association of Insurance Supervisors

e KG: Knowledge Graph

e LLM: Large Language Model

e ME: Mean-Excess (Penalty)

e MSE: Mean Squared Error

e PDE: Partial Differential Equation

e PINN: Physics-Informed Neural Network

e RRaPINN: Residual Risk-Aware PINN

e SCM: Structural Causal Model

e SEC: U.S. Securities and Exchange Commission

e TCP: Temporal Conformal Prediction
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VaR: Value-at-Risk
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IMPORTANT LEGAL DISCLOSURES AND DISCLAIMERS

1. General Disclaimers and No Investment Advice.

This document, "Ascending Pearl's Ladder—Operationalizing the Causal Hierarchy in Financial
Modeling," is published by Aleatoric Systems for informational and discussion purposes only. It
is intended solely for academic, research, and general market education and does not constitute
a recommendation, solicitation, offer, or advice to purchase or sell any security, financial
instrument, or digital asset, or to engage in any specific investment strategy. The financial,
regulatory, and technical concepts discussed are complex and should not be relied upon without
independent professional advice. Aleatoric Systems is not a registered investment advisor,
broker-dealer, or financial institution. The views expressed are those of the author(s) and do not
necessarily reflect the opinion of any other entity.

2. Limitation of Warranty and Liability.

The information and models described herein (including, without limitation, Structural Causal Al,
SCMs, FInCARE, PINNs, RRaPINNs, and TCP) are provided "AS IS" without any warranties of
any kind, express or implied. Past performance, simulated or hypothetical results, or model
backtests are not guarantees or reliable indicators of future performance. Financial modeling is
inherently subject to significant risks and uncertainties, and no representation is made that any
account will or is likely to achieve profits or losses similar to those discussed. Aleatoric Systems
expressly disclaims all liability for any direct, indirect, special, incidental, consequential, or
punitive damages arising from the use of, or reliance on, this white paper.

3. Intellectual Property and Proprietary Information.

The content of this white paper, including all frameworks, methodologies, and concepts
described herein (such as FInCARE, RRaPINNs, and Temporal Conformal Prediction), are the
valuable intellectual property of Aleatoric Systems. All rights are reserved. No part of this
document may be reproduced, stored, or transmitted in any form or by any means without the
prior written permission of Aleatoric Systems. The frameworks and systems may be subject to
pending or registered patents, trademarks, and copyrights.

4. Digital Asset Risk Notice.

Any discussion of digital assets (e.g., stablecoins, cryptocurrencies) is for illustrative,
educational, or case-study purposes only. Digital assets are highly volatile, involve a high
degree of risk, and may be deemed securities in various jurisdictions, including under U.S. SEC
jurisdiction, depending on the facts and circumstances. The regulatory landscape is uncertain
and subject to change.

Section: 5. Governing Law and Dispute Resolution.

All matters concerning the interpretation, validity, and enforcement of the Intellectual Property
and Proprietary Information rights claimed in Section 3 shall be governed by and construed in
accordance with the laws of the State of lllinois, USA, without regard to conflict of law principles.
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